13116 measured reflections

 $R_{\rm int} = 0.014$

7145 independent reflections

6432 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

The first example of a dinuclear organotin complex with a C₂N₂S₂Sn₂ planar dicyclo fragment

Xiao-Niu Fang,* Jian-Hong Wu, Yan Sui, Ping Hu and Rong-Hua Hu

College of Chemistry & Chemical Engineering, JingGangShan University, 343009 Ji'an, JiangXi, People's Republic of China Correspondence e-mail: fangxiaoniu@163.com

Received 18 April 2007; accepted 23 April 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.030; wR factor = 0.087; data-to-parameter ratio = 15.3.

The asymmetric unit of the unexpected title compound, 2,2,6,6-tetra-*n*-butyl-2,6-dichloro-4,8-bis{[(1*E*)-4-methoxybenzvlidene]hvdrazino}-1,5-diaza-2,6-distanna-3,7-dithiabicyclo[3.3.0]octa-3,7-diene $bis\{1,5[(1E)-4-methoxybenzy]$ idene]thiocarbonohydrazide} ethanol disolvate, $[Sn_2(C_4H_9)_4 Cl_2(C_{18}H_{18}N_6O_2S_2)]\cdot 2C_{17}H_{18}N_4O_2S\cdot 2C_2H_5OH$, comprises one half-molecule of the organotin complex, one thiocarbonohydrazide molecule and one ethanol solvent molecule, and is the first example of a substituted $C_2N_2S_2Sn_2$ planar dicyclo-organotin complex. Each Sn^{IV} atom is pentacoordinated with a distorted trigonal-bipyramidal geometry and the complex is disposed across a crystallographic centre of inversion. Weak intermolecular $N{-}H{\cdots}Cl$ and $C{-}H{\cdots}Cl$ hydrogen bonds and weak S...S interactions link the molecules of the organotin complex into one-dimensional infinite chains.

Related literature

For related literature, see: Altmann *et al.* (1998); Barbieri *et al.* (2001); Casas *et al.* (2000); Fang *et al.* (2001); Fang, Sui *et al.* (2006); Fang, Xu *et al.* (2006); Ma *et al.* (2005); Wang *et al.* (2004).

Experimental

Crystal data

[Sn₂(C₄H₉)₄Cl₂(C₁₈H₁₈N₆O₂S₂)]-- $\beta = 85.350 \ (1)^{\circ}$ $2C_{17}H_{18}N_4O_2S \cdot 2C_2H_6O$ $\gamma = 70.521 (1)^{\circ}$ $M_r = 1728.20$ V = 2076.6 (3) Å³ Triclinic, $P\overline{1}$ Z = 1a = 8.9295 (6) Å Mo $K\alpha$ radiation b = 10.3932 (7) Å $\mu = 0.83 \text{ mm}^{-1}$ c = 24.015 (2) Å T = 296 (2) K $\alpha = 81.439 (1)^{\circ}$ $0.40 \times 0.31 \times 0.31 \text{ mm}$

Data collection

Bruker APEX II area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\rm min} = 0.74, T_{\rm max} = 0.77$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	2 restraints
$wR(F^2) = 0.087$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$
7145 reflections	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$
467 parameters	

Table 1

Selected geometric parameters (Å, °).

Sn1-C14	2.133 (3)	Sn1-S1	2.4717 (7)
Sn1-C10	2.140 (3)	Sn1-Cl1	2.6421 (7)
Sn1-N1	2.319 (2)	S1-C1	1.732 (2)
	147 ((2)	N1 0 1 01	77.12 (()
C14 - Sn1 - C10	147.6 (2)	N1-Sn1-S1	77.13 (6)
C14-Sn1-N1	96.5 (2)	C14-Sn1-Cl1	90.29 (9)
C10-Sn1-N1	95.9 (2)	C10-Sn1-Cl1	88.08 (8)
C14-Sn1-S1	105.58 (9)	N1-Sn1-Cl1	160.11 (6)
C10-Sn1-S1	106.3 (2)	S1-Sn1-Cl1	83.04 (2)

Table	2	
TT 1		

Tryurogen-bond geometry (A,	drogen-bond geometry (A, °)).
-----------------------------	-----------------------------	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N5-H5···N7	0.86	2.26	2.619 (4)	105
$C2 - H2A \cdots Cl1^{i}$	0.93	2.70	3.572 (3)	157
$C25 - H25 \cdots O4^{ii}$	0.93	2.52	3.354 (5)	150
$N2 - H2 \cdot \cdot \cdot Cl1^{i}$	0.86	2.62	3.398 (2)	151
$N6-H6\cdots S2^{iii}$	0.86	2.53	3.386 (3)	171
$N5-H5\cdots O4^{ii}$	0.86	2.62	3.379 (5)	147
Symmetry codes: (i	i) $-r + 1 - 1$	v + 2 - z (ii)	-r+1 - v + 2	2 - 7 + 1 (iii)

symmetry codes: (1) -x + 1, -y + 2, -z; (1) -x + 1, -y + 2, -z + 1; (1) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *APEX2*; program(s) used to refine structure: *APEX2*; molecular graphics: *APEX2*; software used to prepare material for publication: *APEX2* and *publCIF* (Westrip, 2007).

We gratefully acknowledge financial support from the Natural Science Foundation of JiangXi Province (No. 0620029).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2228).

References

- Altmann, R., Jurkschat, K., Schurmann, M., Dakternieks, D. & Duthie, A. (1998). Organometallics, 17, 5858–5866.
- Barbieri, F., Sparatore, F., Cagnoli, M., Bruzzo, C., Novelli, F. & Alama, A. (2001). Chem.-Biol. Interact. 134, 27–39.
- Bruker (2004). APEX2 (Version 1.22) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.
- Fang, X.-N., Song, X.-Q. & Xie, Q. L. (2001). J. Organomet. Chem. 619, 43–48.Fang, X.-N., Sui, Y., Ying, S.-M., Xu, Y.-P. & Guo, X.-F. (2006). Acta Cryst. E62, m2008–m2010.
- Fang, X.-N., Xu, Y.-P., Guo, X.-F. & Zeng, X.-R. (2006). Acta Cryst. E62, o1052–o1054.
- Ma, C.-N., Zhang, Q.-F., Zhang, R.-F. & Qiu, L.-L. (2005). J. Organomet. Chem. 690, 3033–3043.
- Wang, Q.-H., Weng, W. & Guo, G.-C. (2004). Chin. J. Struct. Chem. 23, 932–935.

Westrip, S. P. (2007). publCIF. Version 1.0_c. In preparation.

Acta Cryst. (2007). E63, m1525-m1526 [doi:10.1107/S1600536807020090]

The first example of a dinuclear organotin complex with a C2N2S2Sn2 planar dicyclo fragment

X.-N. Fang, J.-H. Wu, Y. Sui, P. Hu and R.-H. Hu

Comment

Organotin complexes have attracted attention in supermolecular chemistry in recent years (Ma *et al.*, 2005; Barbieri *et al.*, 2001), whereas thiosemicarbazones and their complexes have a wide range of applications in biology (Casas *et al.*, 2000). In the context of our continuous interest for the structural and biological properties of organotin compounds (Fang *et al.*, 2001; 2006a), we report here the crystal structure of the title complex, (I). To the best of our knowledge, this is the first example of organotin complex containing $C_2N_2S_2Sn_2$ planar dicyclo fragment.

The structure of (I) is an unexpected product in our work. It crystallizes in space group P-1, with one halfmolecule of an organotin complex [2,2,6,6-Tetra-n-butyl-2,6-dichloro-4,8-di[(1E)-4-methoxybenzylidene]\ hydrazino-1,5-diaza-2,6-distanna-3,7-dithiabicyclo[3.3.0]octane], one substituted thiocarbonohydrazide ligand [1,5-Bis[(1E)-4methoxybenzylidene]thiocarbonohydrazide] and one ethanol molecule in the asymmetric unit (Fig. 1). Part of the thiocarbonohydrazide ligand molecules were cracked to form a novel substituted $C_2N_2S_2S_2$ planar dicyclo organotin complex. The five-membered ring Sn1—S1—C1—N1A—N1 is coplanar with a mean deviation of 0.024 (3) Å. The inversion center is situated at the midpoint of N1—N1A bond, and it is by this bond that the two five-membered rings are fused together. Both of the Sn^{IV} atoms are penta-coordinated with distorted trigonal-bipyramidal geometry. C10, C14 (from butyl groups) and S1 atom occupy the equatorial plane, these equatorial atoms and relative Sn atom are nearly coplanar, the mean deviation from the plane is 0.031 (4) Å. C11 and N1 atoms occupy the axial positions with the N1—Sn1—C11 bond angle 160.11 (6)°. All the C=N bonds exist in E-configuration, and all the bond lengths in (I) are within the expected range and agree well with literature values (Altmann *et al.*, 1998; Fang *et al.*, 2006).

In the crystal lattice, every two molecules of the ligand are linked by the weak hydrogen bonds N6—H6···S2ⁱ to form dimers, with the attached two ethanol molecules by the strong N5—H5···O4ⁱⁱ and weak C25—H25···O4ⁱⁱ hydrogen bonds. The molecules of organotin are linked by S···S interactions (Wang *et al.*, 2004). and N—H···Clⁱⁱⁱ, C—H···Clⁱⁱⁱ weak hydrogen bonds involving all potential S and Cl atom donors, generating one-dimensional infinite chains parallel to the a axis, as shown in Fig. 2. The 4-methoxyphenyl rings protrude on both sides of these chains and have no special intercalations [symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z].

Experimental

The title compound (I) was prepared as an unexpected product in our work by the following procedure: A solution of Schiff base ligand, 1,5-Bis[(1E)-4-methoxybenzylidene]thiocarbonohydrazide, (0.342 g, 1 m mol) and dibutyltin dichloride (0.304 g, 1 m mol) in acetonitrile (20 ml) was heated for 8 h under reflux. The reaction mixture was then cooled and the pale yellow precipitate that had formed was filtered off. Recrystallization of the crude product from ethanol-DMF solution resulted in single crystals of (I) suitable for X-ray diffraction analysis after several days.

Refinement

Slightly disorder in the ethanol was identified from the difference map. Disordered atoms were refined by applying restraints to the bond lengths [1.540 (2)Å for C35—C36 and 1.340 (2)Å for C35—O4]. All the H atoms were positioned in idealized locations and refined as riding on their carrier atoms, with O—H distances of 0.82 (hydroxyl), C—H distances of 0.93 (aryl), 0.97 (methylene) and 0.96Å (methyl) with Uiso(H) = 1.5Ueq(C) for hydroxyl and methyl, Uiso(H) = 1.2Ueq(C) for the other atoms.

Figures

Fig.1. Molecular structure of (I), showing 25% probability displacement ellipsoids. H atoms not involved in hydrogen bonding have been omitted. The symmetry code for A is 2-x, 2-y, -

Fig.2. The packing of (I), viewed down the b axis, hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted. Table 1. Selected geometric parameters $(\text{\AA}, \circ)$.

Table 2. Hydrogen-bonding geometry (Å, °).

2,2,6,6-Tetra-n-butyl-2,6-dichloro-4,8- bis{[(1E)-4-methoxybenzylidene]hydrazino}- 1,5-diaza-2,6-distanna-3,7-dithiabicyclo[3.3.0]octa-3,7-diene 1,5-bis[(1E)-4-methoxybenzylidene]thiocarbonohydrazide ethanol solvate

Crystal data

$[Sn_2(C_4H_9)_4Cl_2(C_{18}H_{18}N_6O_2S_2)]\cdot 2C_{17}H_{18}N_4O_2S\cdot 2C_{18}H_{18}N_6O_2S_2]\cdot 2C_{17}H_{18}N_4O_2S\cdot 2C_{18}H_{18}N_6O_2S_2]\cdot 2C_{17}H_{18}N_4O_2S\cdot 2C_{18}H_{18}N_6O_2S_2)]\cdot 2C_{17}H_{18}N_4O_2S\cdot 2C_{18}H_{18}N_6O_2S_2)$	22 Ⅰ 6€1
$M_r = 1728.20$	$F_{000} = 894$
Triclinic, PT	$D_{\rm x} = 1.382 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 8.9295 (6) Å	Cell parameters from 9573 reflections
b = 10.3932 (7) Å	$\theta = 2.2 - 28.2^{\circ}$
c = 24.015 (2) Å	$\mu = 0.83 \text{ mm}^{-1}$
$\alpha = 81.439 (1)^{\circ}$	T = 296 (2) K
$\beta = 85.350 \ (1)^{\circ}$	Block, pale yellow
$\gamma = 70.521 \ (1)^{\circ}$	$0.40\times0.31\times0.31~mm$
$V = 2076.6 (3) \text{ Å}^3$	

Data collection

Bruker APEX II area-detector diffractometer	7145 independent reflections
Radiation source: fine-focus sealed tube	6432 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.014$
T = 296(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$h = -10 \rightarrow 10$

$T_{\min} = 0.74, \ T_{\max} = 0.77$	$k = -12 \rightarrow 12$
13116 measured reflections	$l = -28 \rightarrow 28$

Refi	nement
1.0,1	1101110111

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.030$	$w = 1/[\sigma^2(F_o^2) + (0.0547P)^2 + 0.6928P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.087$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
7145 reflections	$\Delta \rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$
467 parameters	Extinction correction: none
2 restraints	

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn1	0.812698 (18)	1.104088 (18)	-0.091670 (7)	0.04294 (8)
S1	0.70369 (8)	0.97683 (9)	-0.01266 (3)	0.05509 (19)
S2	0.60672 (15)	0.63859 (11)	0.44775 (4)	0.0835 (3)
01	1.1578 (3)	0.6447 (3)	0.38324 (10)	0.0870 (8)
O2	1.0079 (4)	1.2706 (4)	0.32703 (14)	0.1100 (10)
O3	0.4216 (4)	0.6818 (3)	0.87416 (10)	0.0846 (7)
O4	0.4485 (5)	0.9813 (4)	0.38112 (15)	0.1195 (12)
H4A	0.5388	0.9519	0.3676	0.179*
N1	1.0120 (2)	1.0342 (2)	-0.02674 (9)	0.0428 (5)
N2	0.8235 (2)	0.8662 (3)	0.08325 (9)	0.0499 (5)
H2	0.7385	0.8437	0.0865	0.060*
N3	0.9227 (2)	0.8296 (2)	0.12835 (9)	0.0474 (5)
N4	0.6883 (3)	0.8739 (3)	0.47857 (11)	0.0608 (6)
N5	0.6294 (3)	0.7983 (3)	0.52189 (11)	0.0623 (6)

H5	0.6181	0.8206	0.5554	0.075*
N6	0.5359 (3)	0.6237 (3)	0.55591 (10)	0.0635 (7)
H6	0.5071	0.5548	0.5514	0.076*
N7	0.5255 (3)	0.6639 (3)	0.60890 (10)	0.0609 (6)
Cl1	0.53743 (9)	1.14405 (9)	-0.13637 (3)	0.0652 (2)
C1	0.8556 (3)	0.9364 (3)	0.03407 (10)	0.0408 (5)
C2	0.8603 (3)	0.7939 (3)	0.17573 (12)	0.0564 (7)
H2A	0.7561	0.7939	0.1760	0.068*
C3	0.9413 (3)	0.7534 (3)	0.22894 (12)	0.0556 (7)
C4	1.1033 (3)	0.7185 (3)	0.23344 (13)	0.0615 (8)
H4	1.1677	0.7184	0.2010	0.074*
C5	1.1705 (4)	0.6837 (4)	0.28516 (15)	0.0696 (9)
H5A	1.2801	0.6599	0.2874	0.084*
C6	1.0777 (4)	0.6836 (3)	0.33429 (14)	0.0654 (8)
C7	0.9148 (4)	0.7165 (4)	0.33124 (15)	0.0749 (10)
H7	0.8506	0.7157	0.3637	0.090*
C8	0.8499 (4)	0.7509 (4)	0.27789 (14)	0.0722 (9)
H8	0.7406	0.7730	0.2753	0.087*
С9	1.0686 (6)	0.6324 (5)	0.43472 (16)	0.1052 (15)
H9A	0.9938	0.7208	0.4404	0.158*
H9B	1.1396	0.5992	0.4655	0.158*
Н9С	1.0126	0.5688	0.4329	0.158*
C10	0.7273 (4)	1.3153 (3)	-0.07763 (14)	0.0602 (7)
H10A	0.7475	1.3702	-0.1119	0.072*
H10B	0.6129	1.3418	-0.0715	0.072*
C11	0.7951 (4)	1.3536 (3)	-0.02949 (14)	0.0634 (8)
H11A	0.9084	1.3343	-0.0366	0.076*
H11B	0.7806	1.2959	0.0048	0.076*
C12	0.7209 (5)	1.5024 (4)	-0.02030(19)	0.0827 (11)
H12A	0.7444	1.5594	-0.0534	0.099*
H12B	0.6064	1.5237	-0.0172	0.099*
C13	0.7737 (7)	1.5411 (6)	0.0304 (2)	0.1180 (18)
H13A	0.7333	1.4989	0.0638	0.177*
H13B	0 7340	1 6393	0.0295	0 177*
HI3C	0.8877	1 5099	0.0304	0.177*
C14	0.9298 (4)	0.9572 (3)	-0.14765(14)	0.0628 (8)
H14A	0.9071	1 0019	-0.1859	0.075*
H14B	1 0435	0.9324	-0.1435	0.075*
C15	0.8890 (5)	0.8280 (4)	-0.14076(19)	0.0847 (11)
H15A	0.9100	0.7834	-0.1024	0.102*
H15B	0.7759	0.8519	-0.1460	0.102*
C16	0.9757 (6)	0.7283 (5)	-0.1798(2)	0.0995 (14)
H16A	0.9539	0.7235 (3)	-0.2180	0.119*
H16R	1 0886	0 7064	-0.1748	0.119*
C17	0 9413 (8)	0 5976 (5)	-0.1746(3)	0 130 (2)
H17A	0.9435	0 5587	-0.1357	0.194*
H17B	1 0200	0.5345	-0.1960	0.194*
H17C	0.8381	0.6146	-0.1888	0.194*
C18	1 0726 (9)	1 3605 (7)	0.3/15 (3)	0.177
010	1.0720 (9)	1.5005(7)	0.5+15(5)	0.101 (0)

H18A	0.9978	1.4214	0.3648	0.226*
H18B	1.0990	1.4131	0.3081	0.226*
H18C	1.1672	1.3110	0.3620	0.226*
C19	0.9364 (5)	1.2028 (4)	0.37029 (17)	0.0806 (10)
C20	0.9198 (5)	1.2282 (4)	0.4242 (2)	0.0896 (12)
H20	0.9549	1.2957	0.4346	0.108*
C21	0.8485 (5)	1.1514 (4)	0.46519 (18)	0.0841 (11)
H21	0.8365	1.1685	0.5025	0.101*
C22	0.7980 (4)	1.0529 (3)	0.44951 (14)	0.0633 (8)
C23	0.8144 (4)	1.0330 (4)	0.39310 (15)	0.0739 (9)
H23	0.7773	0.9677	0.3817	0.089*
C24	0.8832 (5)	1.1063 (5)	0.35441 (18)	0.0852 (11)
H24	0.8939	1.0905	0.3170	0.102*
C25	0.7306 (4)	0.9690 (3)	0.49192 (14)	0.0636 (8)
H25	0.7188	0.9863	0.5292	0.076*
C26	0.5903 (4)	0.6915 (3)	0.51171 (13)	0.0595 (7)
C27	0.4748 (4)	0.5921 (3)	0.64858 (13)	0.0612 (7)
H27	0.4480	0.5182	0.6402	0.073*
C28	0.4574 (4)	0.6212 (3)	0.70636 (13)	0.0581 (7)
C29	0.4751 (5)	0.7397 (4)	0.72069 (14)	0.0690 (9)
H29	0.4951	0.8043	0.6925	0.083*
C30	0.4635 (5)	0.7629 (4)	0.77620 (14)	0.0720 (9)
H30	0.4748	0.8432	0.7852	0.086*
C31	0.4354 (4)	0.6676 (4)	0.81836 (13)	0.0630 (8)
C32	0.4171 (4)	0.5487 (4)	0.80527 (14)	0.0681 (9)
H32	0.3984	0.4840	0.8337	0.082*
C33	0.4268 (4)	0.5273 (4)	0.74950 (14)	0.0665 (8)
H33	0.4125	0.4482	0.7406	0.080*
C34	0.4351 (6)	0.8029 (4)	0.89018 (17)	0.0885 (12)
H34A	0.5373	0.8102	0.8778	0.133*
H34B	0.4242	0.7990	0.9304	0.133*
H34C	0.3531	0.8815	0.8732	0.133*
C35	0.3503 (8)	0.9364 (8)	0.3557 (2)	0.154 (3)
H35A	0.2418	0.9881	0.3658	0.185*
H35B	0.3677	0.8408	0.3706	0.185*
C36	0.3665 (12)	0.9471 (10)	0.2915 (2)	0.201 (4)
H36A	0.4087	1.0197	0.2772	0.302*
H36B	0.2640	0.9667	0.2762	0.302*
H36C	0.4370	0.8616	0.2807	0.302*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Sn1	0.03414 (10)	0.04993 (13)	0.04704 (12)	-0.01539 (8)	-0.00385 (7)	-0.00810 (8)
S1	0.0380 (3)	0.0843 (5)	0.0499 (4)	-0.0309 (3)	-0.0072 (3)	-0.0015 (3)
S2	0.1316 (9)	0.0845 (7)	0.0550 (5)	-0.0642 (6)	0.0080 (5)	-0.0114 (4)
01	0.0871 (18)	0.103 (2)	0.0635 (15)	-0.0213 (15)	-0.0233 (13)	-0.0003 (14)
O2	0.128 (3)	0.113 (3)	0.107 (2)	-0.072 (2)	0.0075 (19)	-0.0039 (19)

O3	0.117 (2)	0.0871 (18)	0.0569 (13)	-0.0421 (16)	0.0087 (13)	-0.0187 (12)
O4	0.123 (3)	0.144 (3)	0.108 (2)	-0.072 (3)	-0.032 (2)	0.016 (2)
N1	0.0316 (10)	0.0512 (13)	0.0465 (11)	-0.0142 (9)	-0.0047 (8)	-0.0061 (9)
N2	0.0348 (11)	0.0678 (15)	0.0511 (13)	-0.0232 (10)	-0.0059 (9)	-0.0025 (11)
N3	0.0385 (11)	0.0530 (13)	0.0531 (13)	-0.0184 (10)	-0.0079 (9)	-0.0023 (10)
N4	0.0718 (17)	0.0540 (15)	0.0574 (15)	-0.0246 (13)	0.0011 (12)	-0.0018 (12)
N5	0.0788 (18)	0.0582 (16)	0.0540 (14)	-0.0292 (14)	0.0021 (12)	-0.0066 (12)
N6	0.0831 (18)	0.0598 (16)	0.0535 (14)	-0.0322 (14)	0.0005 (12)	-0.0065 (12)
N7	0.0720 (17)	0.0575 (15)	0.0530 (14)	-0.0217 (13)	0.0003 (12)	-0.0060 (12)
Cl1	0.0440 (4)	0.0873 (6)	0.0691 (5)	-0.0273 (4)	-0.0169 (3)	-0.0028 (4)
C1	0.0319 (11)	0.0455 (14)	0.0467 (14)	-0.0142 (10)	-0.0009 (9)	-0.0072 (11)
C2	0.0452 (15)	0.069 (2)	0.0595 (17)	-0.0265 (14)	-0.0058 (12)	-0.0001 (14)
C3	0.0534 (16)	0.0594 (18)	0.0563 (17)	-0.0239 (14)	-0.0066 (12)	0.0010 (13)
C4	0.0484 (16)	0.072 (2)	0.0597 (18)	-0.0174 (15)	-0.0036 (13)	0.0017 (15)
C5	0.0524 (17)	0.080 (2)	0.072 (2)	-0.0189 (16)	-0.0111 (15)	0.0019 (17)
C6	0.070 (2)	0.061 (2)	0.0615 (19)	-0.0157 (16)	-0.0144 (15)	-0.0029 (15)
C7	0.067 (2)	0.088 (3)	0.060 (2)	-0.0150 (18)	-0.0011 (15)	-0.0042 (17)
C8	0.0495 (17)	0.094 (3)	0.068 (2)	-0.0219 (17)	-0.0037 (14)	0.0032 (18)
C9	0.124 (4)	0.117 (4)	0.054 (2)	-0.009 (3)	-0.013 (2)	-0.014 (2)
C10	0.0494 (16)	0.0533 (17)	0.075 (2)	-0.0076 (13)	-0.0078 (14)	-0.0172 (15)
C11	0.0637 (19)	0.0587 (19)	0.071 (2)	-0.0210 (15)	0.0015 (15)	-0.0193 (15)
C12	0.080 (2)	0.068 (2)	0.105 (3)	-0.0251 (19)	0.010(2)	-0.032 (2)
C13	0.136 (4)	0.119 (4)	0.126 (4)	-0.061 (3)	0.028 (3)	-0.074 (3)
C14	0.0591 (18)	0.067 (2)	0.0679 (19)	-0.0245 (15)	0.0097 (14)	-0.0247 (16)
C15	0.091 (3)	0.074 (2)	0.099 (3)	-0.039 (2)	0.022 (2)	-0.031 (2)
C16	0.117 (4)	0.081 (3)	0.109 (3)	-0.036 (3)	0.020 (3)	-0.043 (3)
C17	0.165 (5)	0.089 (3)	0.153 (5)	-0.058 (4)	0.020 (4)	-0.050 (3)
C18	0.210 (7)	0.126 (5)	0.157 (5)	-0.114 (5)	-0.002 (5)	-0.002 (4)
C19	0.085 (3)	0.079 (3)	0.077 (2)	-0.031 (2)	-0.0040 (19)	0.006 (2)
C20	0.101 (3)	0.071 (2)	0.112 (3)	-0.049 (2)	-0.006 (2)	-0.012 (2)
C21	0.105 (3)	0.074 (2)	0.085 (3)	-0.046 (2)	-0.007 (2)	-0.007 (2)
C22	0.0634 (18)	0.0535 (18)	0.074 (2)	-0.0211 (15)	-0.0047 (15)	-0.0033 (15)
C23	0.080 (2)	0.075 (2)	0.071 (2)	-0.0339 (19)	0.0033 (17)	-0.0082 (18)
C24	0.091 (3)	0.094 (3)	0.077 (2)	-0.044 (2)	0.006 (2)	-0.006 (2)
C25	0.073 (2)	0.0599 (19)	0.0606 (18)	-0.0247 (16)	-0.0019 (15)	-0.0083 (15)
C26	0.0691 (19)	0.0536 (18)	0.0560 (17)	-0.0225 (15)	-0.0039 (14)	-0.0010 (14)
C27	0.072 (2)	0.0545 (18)	0.0591 (18)	-0.0241 (15)	0.0011 (14)	-0.0068 (14)
C28	0.0642 (18)	0.0535 (18)	0.0554 (17)	-0.0201 (14)	-0.0005 (13)	-0.0025 (13)
C29	0.093 (2)	0.059 (2)	0.0590 (19)	-0.0350 (18)	-0.0019 (16)	0.0014 (15)
C30	0.093 (3)	0.062 (2)	0.069 (2)	-0.0341 (19)	0.0013 (18)	-0.0119 (17)
C31	0.0655 (19)	0.066 (2)	0.0561 (18)	-0.0204 (16)	0.0046 (14)	-0.0095 (15)
C32	0.084 (2)	0.063 (2)	0.0586 (19)	-0.0298 (18)	0.0106 (16)	-0.0053 (15)
C33	0.077 (2)	0.059 (2)	0.067 (2)	-0.0284 (17)	0.0112 (16)	-0.0123 (16)
C34	0.109 (3)	0.088 (3)	0.074 (2)	-0.034 (2)	0.006 (2)	-0.029 (2)
C35	0.147 (6)	0.199 (8)	0.132 (5)	-0.087 (5)	-0.043 (4)	0.020 (5)
C36	0.276 (11)	0.247 (10)	0.162 (7)	-0.181 (9)	0.009 (7)	-0.060 (7)

Geometric parameters (Å, °)

Sn1—C14	2.133 (3)	C12—H12B	0.9700
Sn1—C10	2.140 (3)	C13—H13A	0.9600
Sn1—N1	2.319 (2)	С13—Н13В	0.9600
Sn1—S1	2.4717 (7)	С13—Н13С	0.9600
Sn1—Cl1	2.6421 (7)	C14—C15	1.488 (5)
S1—C1	1.732 (2)	C14—H14A	0.9700
S2—C26	1.687 (3)	C14—H14B	0.9700
O1—C6	1.364 (4)	C15—C16	1.479 (5)
O1—C9	1.428 (5)	C15—H15A	0.9700
O2—C18	1.349 (6)	C15—H15B	0.9700
O2—C19	1.399 (5)	C16—C17	1.475 (6)
O3—C31	1.361 (4)	C16—H16A	0.9700
O3—C34	1.413 (5)	C16—H16B	0.9700
O4—C35	1.343 (8)	C17—H17A	0.9600
O4—H4A	0.8200	С17—Н17В	0.9600
N1—C1 ⁱ	1.309 (3)	С17—Н17С	0.9600
N1—N1 ⁱ	1.409 (4)	C18—H18A	0.9600
N2—C1	1.355 (3)	C18—H18B	0.9600
N2—N3	1.382 (3)	C18—H18C	0.9600
N2—H2	0.8600	C19—C20	1.346 (6)
N3—C2	1.286 (4)	C19—C24	1.356 (6)
N4—C25	1.260 (4)	C20—C21	1.419 (6)
N4—N5	1.385 (4)	C20—H20	0.9300
N5—C26	1.329 (4)	C21—C22	1.358 (5)
N5—H5	0.8600	C21—H21	0.9300
N6—C26	1.335 (4)	C22—C23	1.389 (5)
N6—N7	1.384 (3)	C22—C25	1.465 (5)
N6—H6	0.8600	C23—C24	1.352 (5)
N7—C27	1.270 (4)	С23—Н23	0.9300
C1—N1 ⁱ	1.309 (3)	C24—H24	0.9300
C2—C3	1.456 (4)	С25—Н25	0.9300
C2—H2A	0.9300	C27—C28	1.449 (4)
C3—C8	1.378 (4)	С27—Н27	0.9300
C3—C4	1.379 (4)	C28—C29	1.388 (5)
C4—C5	1.370 (4)	C28—C33	1.389 (5)
C4—H4	0.9300	C29—C30	1.379 (5)
C5—C6	1.386 (5)	С29—Н29	0.9300
С5—Н5А	0.9300	C30—C31	1.377 (5)
C6—C7	1.384 (5)	С30—Н30	0.9300
С7—С8	1.397 (5)	C31—C32	1.382 (5)
С7—Н7	0.9300	C32—C33	1.381 (5)
С8—Н8	0.9300	С32—Н32	0.9300
С9—Н9А	0.9600	С33—Н33	0.9300
С9—Н9В	0.9600	C34—H34A	0.9600
С9—Н9С	0.9600	C34—H34B	0.9600

C10—C11	1.507 (4)	C34—H34C	0.9600
C10—H10A	0.9700	C35—C36	1.528 (7)
C10—H10B	0.9700	С35—Н35А	0.9700
C11—C12	1.509 (5)	С35—Н35В	0.9700
C11—H11A	0.9700	С36—Н36А	0.9600
C11—H11B	0.9700	С36—Н36В	0.9600
C12—C13	1.493 (6)	С36—Н36С	0.9600
C12—H12A	0.9700		
C14—Sn1—C10	147.6 (2)	H14A—C14—H14B	107.3
C14—Sn1—N1	96.5 (2)	C16—C15—C14	115.1 (3)
C10—Sn1—N1	95.9 (2)	C16—C15—H15A	108.5
C14—Sn1—S1	105.58 (9)	C14—C15—H15A	108.5
C10—Sn1—S1	106.3 (2)	C16—C15—H15B	108.5
N1—Sn1—S1	77.13 (6)	C14—C15—H15B	108.5
C14—Sn1—C11	90.29 (9)	H15A—C15—H15B	107.5
C10—Sn1—Cl1	88.08 (8)	C17—C16—C15	117.6 (4)
N1—Sn1—Cl1	160.11 (6)	C17—C16—H16A	107.9
S1—Sn1—Cl1	83.04 (2)	C15—C16—H16A	107.9
C1—S1—Sn1	99.19 (9)	C17—C16—H16B	107.9
C6—O1—C9	117.9 (3)	C15—C16—H16B	107.9
C18—O2—C19	117.2 (4)	H16A—C16—H16B	107.2
C31—O3—C34	118.2 (3)	C16—C17—H17A	109.5
C35—O4—H4A	109.5	C16—C17—H17B	109.5
C1 ⁱ —N1—N1 ⁱ	115.5 (2)	H17A—C17—H17B	109.5
C1 ⁱ —N1—Sn1	124.44 (18)	С16—С17—Н17С	109.5
N1 ⁱ —N1—Sn1	119.78 (19)	H17A—C17—H17C	109.5
C1—N2—N3	122.2 (2)	H17B—C17—H17C	109.5
C1—N2—H2	118.9	O2—C18—H18A	109.5
N3—N2—H2	118.9	O2—C18—H18B	109.5
C2—N3—N2	115.0 (2)	H18A—C18—H18B	109.5
C25—N4—N5	116.5 (3)	O2-C18-H18C	109.5
C26—N5—N4	120.1 (3)	H18A—C18—H18C	109.5
C26—N5—H5	119.9	H18B—C18—H18C	109.5
N4—N5—H5	119.9	C20—C19—C24	120.7 (4)
C26—N6—N7	120.2 (3)	C20—C19—O2	124.2 (4)
C26—N6—H6	119.9	C24—C19—O2	115.1 (4)
N7—N6—H6	119.9	C19—C20—C21	119.8 (4)
C27—N7—N6	115.9 (3)	С19—С20—Н20	120.1
N1 ⁱ —C1—N2	120.3 (2)	C21—C20—H20	120.1
N1 ⁱ —C1—S1	128.1 (2)	C22—C21—C20	119.5 (4)
N2—C1—S1	111.53 (17)	C22—C21—H21	120.3
N3—C2—C3	124.6 (3)	C20-C21-H21	120.3
N3—C2—H2A	117.7	C21—C22—C23	118.5 (3)
С3—С2—Н2А	117.7	C21—C22—C25	119.9 (3)
C8—C3—C4	118.0 (3)	C23—C22—C25	121.6 (3)
C8—C3—C2	117.8 (3)	C24—C23—C22	121.5 (4)
C4—C3—C2	124.1 (3)	С24—С23—Н23	119.2
C5—C4—C3	120.7 (3)	С22—С23—Н23	119.2

С5—С4—Н4	119.6	C23—C24—C19	120.0 (4)
C3—C4—H4	119.6	C23—C24—H24	120.0
C4—C5—C6	121.0 (3)	C19—C24—H24	120.0
C4—C5—H5A	119.5	N4—C25—C22	120.9 (3)
С6—С5—Н5А	119.5	N4—C25—H25	119.6
O1—C6—C7	124.4 (3)	C22—C25—H25	119.6
O1—C6—C5	115.8 (3)	N5-C26-N6	116.2 (3)
C7—C6—C5	119.7 (3)	N5-C26-S2	124.2 (2)
C6—C7—C8	117.9 (3)	N6-C26-S2	119.6 (2)
С6—С7—Н7	121.0	N7—C27—C28	122.4 (3)
С8—С7—Н7	121.0	N7—C27—H27	118.8
C3—C8—C7	122.6 (3)	C28—C27—H27	118.8
С3—С8—Н8	118.7	C29—C28—C33	118.0 (3)
С7—С8—Н8	118.7	C29—C28—C27	121.8 (3)
O1—C9—H9A	109.5	C33—C28—C27	120.1 (3)
O1—C9—H9B	109.5	C30—C29—C28	120.8 (3)
Н9А—С9—Н9В	109.5	C30—C29—H29	119.6
01-C9-H9C	109.5	C28—C29—H29	119.6
H9A—C9—H9C	109.5	$C_{31} - C_{30} - C_{29}$	120.2 (3)
H9B-C9-H9C	109.5	$C_{31} - C_{30} - H_{30}$	119.9
C11—C10—Sn1	117 4 (2)	C29—C30—H30	119.9
C11—C10—H10A	107.9	03-C31-C30	124.3 (3)
Sn1—C10—H10A	107.9	03 - C31 - C32	1155(3)
C11—C10—H10B	107.9	C_{30} C_{31} C_{32}	120.2 (3)
Sn1—C10—H10B	107.9	C_{33} C_{32} C_{31}	119.2 (3)
H10A—C10—H10B	107.2	C33—C32—H32	120.4
C10-C11-C12	113.9 (3)	$C_{31} - C_{32} - H_{32}$	120.4
C10-C11-H11A	108.8	C_{32} C_{33} C_{28}	121.6 (3)
C12—C11—H11A	108.8	C32—C33—H33	119.2
C10—C11—H11B	108.8	C28—C33—H33	119.2
C12—C11—H11B	108.8	O_{3} C_{34} H_{34A}	109.5
H11A_C11_H11B	107.7	O3-C34-H34B	109.5
C13 - C12 - C11	115 5 (4)	H34A - C34 - H34B	109.5
C13—C12—H12A	108.4	$O_3 - C_3 4 - H_3 4 C$	109.5
C_{11} C_{12} H_{12A}	108.4	H34A - C34 - H34C	109.5
C13—C12—H12B	108.4	H34B - C34 - H34C	109.5
C11—C12—H12B	108.4	04-C35-C36	116 3 (5)
H12A - C12 - H12B	107.5	04-C35-H35A	108.2
C12—C13—H13A	109.5	C36—C35—H35A	108.2
C12—C13—H13B	109.5	04-C35-H35B	108.2
H13A_C13_H13B	109.5	C36-C35-H35B	108.2
C12_C13_H13C	109.5	H354_C35_H35B	107.4
H13A_C13_H13C	109.5	C35_C36_H36A	109.5
H13B_C13_H13C	109.5	C35_C36_H36B	109.5
C15—C14—Sn1	117 1 (2)	H36A_C36_H36B	109.5
C15-C14-H14A	108.0	C35-C36-H36C	109.5
Sn1—C14—H14A	108.0	H36A_C36_H36C	109.5
C15—C14—H14B	108.0	H36B-C36-H36C	109.5
Sn1—C14—H14B	108.0		107.0

Symmetry codes: (i) -x+2, -y+2, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N5—H5…N7	0.86	2.26	2.619 (4)	105
C2—H2A…Cl1 ⁱⁱ	0.93	2.70	3.572 (3)	157
C25—H25····O4 ⁱⁱⁱ	0.93	2.52	3.354 (5)	150
N2—H2···Cl1 ⁱⁱ	0.86	2.62	3.398 (2)	151
N6—H6····S2 ^{iv}	0.86	2.53	3.386 (3)	171
N5—H5···O4 ⁱⁱⁱ	0.86	2.62	3.379 (5)	147

Symmetry codes: (ii) -*x*+1, -*y*+2, -*z*; (iii) -*x*+1, -*y*+2, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*+1.

Fig. 2

